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recognition and others, But:

* Large amounts C

* Low efficiency

* Hard to pick the best hyperpa




Algorithm Chosen: Genetic Algorithms
Implement a genetic algorithm that can help finding optimal
parameters for Deep Learning Convolutional neural networks.
Selecting CNN

* the number of convolutional layers

* number of filters

* Number of pulling layers
Select function for ga

* Validation loss of the model

* Number of trained parameters



Week 1-2: Genetic Algorithm with one object function
Week 3-4: Genetic Algorithm with two objects functions
Week 5-6: Deep Learning

Week 7-9: Integration of GA with DL (filters)

Week 10-11: Increasing complexity of Algorithm (loss and
parameters)

Week 10-11: Testing on vermeer Data & Improving Algorithm
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* Classification problem using CNN




* Convolutional Neural Network ( CNN )
* C(Classification problem using CNN
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*  Number of Filter
* Kernel Size

* Pool Size

*  Number of Units
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Number of Filters
Kernel Size

Pool Size
Number of Units
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Idea Pooling

Component-by-componve learning and developm

Python

Tensorflow




What was done?

min  f(x) = x + 10sin(2x)
Subject to
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Techniques

L min Fx) = min(f (), 4]
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Genetic Algorithm:

generateRandomPopulation()
fitness(population)
select(population, fitnessScore)
crossover(population)
mutation(population, index)

main()

Deep Learning Model:

Conv2D(numberOfFilters, kernelSize,
activation="relu”)

MaxPooling2D(2)

Flatten()

Dense(2, activation="sigmoid”)

fit(Vermeer Dataset)
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Results from Implementation

Pareto Frontier: Minimizing Loss vs. Number of Parameters r vs. Num f Param
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Without proper hardware, our model takes a long time to find the optimal
deep learning hyperparameters
* This forces us to use suboptimal values for population, number of
generations, and number of epochs
Variables with large domains can occasionally cause premature convergence
* The algorithm can converge to some suboptimal value before the best
value is found
Our final results won’t be accurate if someone uses malicious images to

attack our system



* Improve the code to deal with premature convergence
* Increase population size (requires better GPUs)
* Implement uniform crossover
* Favored replacement of similar individuals (crowding)
* Experiment with GA hyperparameters and functions
* Find better population sizes, mutation rates, etc.
* Implement different selection, crossover, and mutation functions
* Implement termination function
e Our current GA algorithm runs the same number of generations each
time
« Termination condition can save time if the best value is found before

the max number of generations is reached






