Vermeer

GENE[ICREEARNING

Deep Learning Model Optimization

Problem & Solution & History

Deep Learning & Genetic Algorithm

Software Tools
Implemented Algorit
Demo

Results

Limitations

recognition and others, But:

* Large amounts C

* Low efficiency

* Hard to pick the best hyperpa

Algorithm Chosen: Genetic Algorithms
Implement a genetic algorithm that can help finding optimal
parameters for Deep Learning Convolutional neural networks.
Selecting CNN

* the number of convolutional layers

* number of filters

* Number of pulling layers
Select function for ga

* Validation loss of the model

* Number of trained parameters

Week 1-2: Genetic Algorithm with one object function
Week 3-4: Genetic Algorithm with two objects functions
Week 5-6: Deep Learning

Week 7-9: Integration of GA with DL (filters)

Week 10-11: Increasing complexity of Algorithm (loss and
parameters)

Week 10-11: Testing on vermeer Data & Improving Algorithm

Deep Learning

Deep Learning

’ * Convolutional Neural Network (CNI\'I.-""V
* Classification problem using CNN

* Convolutional Neural Network (CNN)
* C(Classification problem using CNN

Vermeer

Y

Input Convolution Pooling

* Convolutional Neural Network (CNN)
* C(Classification problem using CNN

v

Pooling

v

4
<&

Convolution Pooling

* Number of Filter
* Kernel Size

* Pool Size

* Number of Units

Vermeer

Input Convolution Pooling Convolution Pooling

S

Py
PEE'S

v
PR

Flatten Dense Result

DA
DA

Genetic Algorithm

e e

DA
DA

Genetic Algorithm

- - - - -
! 4 ! ’ ! 7 !
12% 61% 7% 20%

DA
DA

Genetic Algorithm

- - -

Genetic Algorithm

DA
DA

Genetic Algorithm

DA
DA

- - - -
]
80% 2% 6%

Genetic Algorithm

-
12%

1

DA
DA

e h

Genetic Algorithm

-

1

Number of Filters
Kernel Size

Pool Size
Number of Units

Vermeer

Thire
o

Input Convolution Pooling Convolution Pooling Flatten Dense Result

Idea Pooling

Component-by-componve learning and developm

Python

Tensorflow

What was done?

min f(x) = x + 10sin(2x)
Subject to

0<xr<10

Best Fitness

o
o

o
»

Optimization

4 6
Generation

min {p; = 27 + 4z, py = 23 + 2}

z1,72

subject to
271 + 323 -8<0

7
.’E1+.’L‘2—§=0

051:1$10

0<2 <5

Techniques

L min Fx) = min(f (), 4]

Dominated solution
Sub-optimal plan

Optimal Solutions) }
400) Non-dominated soluion

|
Optimal plan ---:\‘ f,(x) Optimal Solution
(S00)

Genetic Algorithm:

generateRandomPopulation()
fitness(population)
select(population, fitnessScore)
crossover(population)
mutation(population, index)

main()

Deep Learning Model:

Conv2D(numberOfFilters, kernelSize,
activation="relu”)

MaxPooling2D(2)

Flatten()

Dense(2, activation="sigmoid”)

fit(Vermeer Dataset)

s 1 b
AR e (1-%)P, |

10 1 1

Results from Implementation

Pareto Frontier: Minimizing Loss vs. Number of Parameters r vs. Num f Param
°
09
08
07
06

£2: Number of Parameters () o
Normalized -

04
03
0.2
0.1

0

Without proper hardware, our model takes a long time to find the optimal
deep learning hyperparameters
* This forces us to use suboptimal values for population, number of
generations, and number of epochs
Variables with large domains can occasionally cause premature convergence
* The algorithm can converge to some suboptimal value before the best
value is found
Our final results won’t be accurate if someone uses malicious images to

attack our system

* Improve the code to deal with premature convergence
* Increase population size (requires better GPUs)
* Implement uniform crossover
* Favored replacement of similar individuals (crowding)
* Experiment with GA hyperparameters and functions
* Find better population sizes, mutation rates, etc.
* Implement different selection, crossover, and mutation functions
* Implement termination function
e Our current GA algorithm runs the same number of generations each
time
« Termination condition can save time if the best value is found before

the max number of generations is reached

